Menu

LATERAL PERFORMANCE OF HIGH RISE BUILDING INCORPORATING SPACE SHEAR WALL AGAINST WIND LIM WEI JIA FACULTY OF ENGINEERING TECHNOLOGY UNIVERSITI MALAYSIA PERLIS 2018 LATERAL PERFORMANCE OF HIGH RISE BUILDING INCORPORATING SPACE SHEAR WALL AGAINST WIND by LIM WEI JIA Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering Technology DECEMBER 2018 CHAPTER 1 INTRODUCTION 1

March 30, 2019 0 Comment

LATERAL PERFORMANCE OF HIGH RISE BUILDING INCORPORATING SPACE SHEAR WALL AGAINST WIND

LIM WEI JIA

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

FACULTY OF ENGINEERING TECHNOLOGY
UNIVERSITI MALAYSIA PERLIS
2018

LATERAL PERFORMANCE OF HIGH RISE BUILDING INCORPORATING SPACE SHEAR WALL AGAINST WIND

by

LIM WEI JIA

Report submitted in partial fulfillment
of the requirements for the degree
of Bachelor of Engineering Technology

DECEMBER 2018

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The development of tall buildings has been prolonged in major cities of Malaysia such as Kuala Lumpur, Penang and Johor Bahru due to the rapid growth of urban population (Fadzil, 2016). The structural stability of tall building is not only depended on the ability to withstand axial load, but also the lateral performance. Besides, the city such as Penang, due to the geographical location which is an island, it is frequently exposed to wind along the years (Deraman & Chik, 2014). Thus, the impact of wind acting on tall building becomes an important aspect and challenge in structural design.

Nowadays, shear wall is the most common structural element to maintain lateral performance of high rise building in Malaysia. They are flexural members and which normally constructed in high rise buildings to avoid the total collapse of the high rise buildings under lateral loading. The high in-plane stiffness and strength of shear wall are used to resist large horizontal loads and support gravity loads simultaneously. However, the shear wall still have the limitation on building space and opening of window and door (Abd-El-Rahim & Farghaly, 2010).

Therefore, a new innovative structure element known as space shear wall, which is a space frame system, to resist the lateral forces generated by the wind activities. The space shear wall will able to maintain the lateral performance while giving advantage such as providing ability of allowing natural lighting (Bayat, Ghazali, & Tahir, 2014).

In this research, a study has been carried out to determine the lateral performance by applying space shear wall in high rise building model. The models with and without space shear wall will be tested by numerical analysis and physical testing to verify.

1.2 Problem Statement

The rapid growth of urban population and increased income in the Southeast Asia has prolonged the development of tall buildings which are either used for residential or commercial purposes (Fadzil, 2016). In Penang, there is a higher proportion of new high-rise buildings are going to develop in coming years (Lim, 2015). Besides that, Penang is also a city that exposed to wind frequently along the years. The average wind speed of building in Penang is about 29.79 m/s (Deraman & Chik, 2014). The impact of wind acting on tall building becomes an important aspect in structural design.

Shear wall is the most common structural element to maintain lateral performance of high rise building in Malaysia. However, the application of shear walls limited the demandable of architectural openings (windows & doors) in the exterior views of such buildings (Abd-El-Rahim & Farghaly, 2010). The shear wall occupied more space in a building and obstructed natural lighting. Besides, with the trend of development of high rise in Malaysia, the main challenge for structural engineers nowadays is to optimise the performance and construction cost for creating an excellent lateral system (Bayat et al., 2014). The innovation of advanced systems such as mass tuned damper can help to dissipate lateral load but these systems require high production cost to implement. Therefore, this research introduces space shear wall, which is a space frame system, which allow more natural lighting and space, while also strengthen the lateral resisting performance without costing too much has been introduced.

1.3 Objectives

The objectives of this study are:

i. To analyse lateral displacement of high rise building with and without space shear wall against wind.
ii. To compare various configuration of space shear wall to be applied.
iii. To verify the outcome between software analysis (SAP 2000) and wind tunnel test.

1.4 Scope of Study

In this research, the behaviour of a structure is studied based on the lateral performance when exposed to wind loading. The study of wind loading is based on Penang location only. It focussed on the stiffness of structure and distribution of loading to increase the stability of a structure. The application of space shear wall is studied for its properties to resist lateral loading.

The structures of this study are 16 storeys height of building. The structure with shear wall is the control specimen. Another several structures with different configuration of space shear wall are going to study. The parameters of these studies is the lateral displacement of the structure. For wind tunnel testing, models will be tested by measuring its displacement against wind load applied.

1.5 Significant of Study

The implementation of space shear wall can be determined by analysing the lateral displacement when wind load applied. The outcome can be verified with results from wind tunnel test. The application of space shear wall is significant in future construction field. Space shear wall is not only has stiffness and high damping to dissipate lateral energy, it also provide the odds to compatible with architectural consideration and encouragement of natural lighting (Bayat et al., 2014). Besides, it is not only applicable in new development of high rise building, but also able to retrofit existing building when more lateral resisting capacity needed.

1.6 Thesis Outline

The thesis is divided into 5 chapters which are introduction, literature review, methodology, result and discussion while the last chapter is conclusion and recommendation. Chapter 1 (Introduction) discussed the research background, problem statement, objective of research, scope of study, significant of study and also the outline of the thesis.

Chapter 2 (Literature Review) discussed regarding the demand of high rise building, concept of lateral resisting system and concept of shear wall against wind from previous published works. Some information such as wind speed, equivalent static wind load, lateral loading are stated in this chapter. Besides that, the principal and application of the space shear wall also being discussed in this part of chapter based on previous study.

Chapter 3 (Methodology) described the details of method used for this research. This chapter explain the calculation of wind loading and equivalent static wind load sequences of modelling, assignment of material and loading, and analysis by using SAP2000. Besides, this chapter includes the procedure of constructing the structure and the configuration of space shear wall in the structure. The wind tunnel testing procedure is also discussed in this part.

Chapter 4 (Results and Discussion) is the part to analyse result and discuss for this research after performing the simulation and testing. This means that how the space shear wall affect lateral performance of structure against wind is analysed and discussed. Besides that, the configuration of space shear wall affecting lateral performance is being determined. In addition, the comparison between the software simulation and wind tunnel testing.

Chapter 5 (Conclusion) indicated the conclusion of this research and achievement of the objectives. The application of space shear wall had been discussion after the conclusion. There are also included the recommendation for the future works or researches. This thesis concludes with a References List and Appendix.
?

x

Hi!
I'm Eddie!

Would you like to get a custom essay? How about receiving a customized one?

Check it out